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acid/H202
13 were for target-I (lane 4) and target-Ill (lane 8) fully 

consistent with the results of sequence-specific cleavage. For 
target-II, sequence-random cleavage afforded approximately 
equimolar quantities (densitometry) of radiolabeled fragments 
shorter than full-length target strand representing cleavage at and 
to the radiolabeled side of Tl 3 (lane 6).12 This suggests that Tl 3 
is the predominant site of cross-linking in target-II, implying that 
this lesion must be resistant to NaBH4/C6H5NH2 cleavage.14 

These data demonstrate conclusively that a psoralen can be 
targeted to react with a selected thymidine in a target single strand. 
With the present system, it is apparent that the first extrahelical 
residue in the target strand to the 3'-side of the hybrid duplex 
is especially susceptible to photoreaction. The absence of ap­
preciable photoreaction at the proximal 5'-TA site in the hybrid 
of probe I with the target DNA is especially impressive. Fur­
thermore, this study demonstrates that the NaBH4/C6H5NH2-
promoted cleavage reaction of the photoadducted thymidine is 
a preparatively useful reaction.15 The combination of these two 
selective processes renders psoralen-oligonucleotide conjugates 
sequence-tunable, site-specific endonucleases. 

The results herein pinpoint for the first time at nucleotide 
resolution the sites of photo-cross-links afforded by a psoralen 
covalently tethered to the terminus of a probe oligodeoxynucleotide. 
Although demonstrated with a single-stranded-DNA target, the 
methods herein, with minor modification, should be applicable 
to the definition of cross-link location in DNA-RNA hybrid 
structures of interest in studies of antisense repression of mRNA 
translation16 and cross-links or even ternary linkages in triplex 
structures of interest in repression of gene transcription.2 
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The reaction of Fischer carbene complexes with alkynes is one 
of great utility in the synthesis of substituted quinones and phe­
nols.1 Recently we reported that the reactions of ketoalkynes 
with alkoxyalkenyl carbene complexes of the type la give bicyclic 
lactones of the type 3a (Scheme I) that arise from double cy­
clizations of cross-conjugated ketoketene intermediates in an 
overall process that involves an 8e" reorganization.2 We report 
here a demonstration that these cyclizations can be effected in 
other possible 8e~ configurations, the first examples of 1Oe" 
processes in this system, and evidence which suggests that the 
selectivity for the formation of the two possible isomeric V.^-vinyl 
carbene and ?j4-vinyl ketene complexed intermediates is under 
stereoelectronic control.3 

A possible mechanism for the formation of lactones of the type 
3 has been previously proposed to involve cross-conjugated ke­
toketenes of the type A that is complexed to chromium.2,4 The 
overall process for the formation of lactone 3a can be envisioned 
as the stitching together of the carbene ligand, a CO ligand, and 
the ketoalkyne as indicated in structure A. Permutation of the 
vinyl group in A about the cross-conjugated ketoketene unit 
produces four configurations that would be expected to lead to 
bicyclic lactones in similar 8e~ ring closures. These are indicated 
by structures A-D (Chart I) where the labels R)-R4 define the 
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positions available for the vinyl group (the metal has been omitted 
for clarity). In principal, it should be possible to access all four 
of these configurations with the proper choice of carbene complex 
and alkyne. 

It was possible to access the distal-crossed and proximal-crossed 
configurations from the reaction of the alkyl carbene complex 4 
and the ketoalkynes 5 and 7, respectively. The reaction with alkyne 
5 produced the tricyclic lactone 6 as a single diastereomer in which 
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the relatively stereochemistry was assigned by X-ray diffraction.5 

The lactone 6 has the methoxyl group and methine hydrogen cis 
and this requires that the cross-conjugated ketene complex 10-C 
cyclizes to 6 via the indicated Z isomer. Although the mass 
balance is not high, the apparent preference for the formation of 
the Z isomer of 10-C which has the methoxyl anti to the ketone 
function may be due to an electronic interaction that favors a trans 
relationship of the methoxyl and the carbonyl.6 In support of 
this idea is the observation that the reaction of the amino complex 
lb with 3-hexyn-2-one shifts the product partition in favor of the 
lactone product 3 relative to the methoxyl complex la. The 
formation of 2 requires the intermediacy of a ketoketene complex 
in which the group XR is syn to the keto group of the alkyne, and 
for the formation of the lactone 3 this relationship must be anti 
as it is for example in 10-C.2 Whether or not the product dis­
tribution for these reactions are under stereoelectronic control 
remains to be established, nonetheless, this result extends the 
synthetic utility of the lactone-forming reactions in the distal-
extended mode in our original observations.2 

The reaction of 4 with the alkyne 77 produces two compounds, 
8 and 9, both of which arise from the proximal-crossed configu­
ration. However, these two products are apparently derived from 
the two stereoisomeric cross-conjugated ketoketene complexes 
U-D and 12-D. The lactone 8 is thought to arise from the isomer 
H-D, but the monocyclic lactone 9 can only arise from the isomer 
12-D.8 The formation of 9 requires a 1,6-hydride shift that 
involves an unprecedented 1Oe" reorganization in the overall 
process. If the product ratio reflects the stereochemistry of the 
reaction intermediates, then the vinyl ketene complex H-D with 
the methoxyl anti to the ketone carbonyl is preferred by a factor 
of 2.7:1 over the syn isomer 12-D. 

The final example illustrated in Scheme III was examined in 
an effort to document the fourth cyclization mode for these re­
actions (proximal-extended). The lactone 14 was the minor 

(5) See supplementary material for data from the X-ray structural de­
termination. 
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Zh. Org. KMm. 1976, 12, 530. 

(8) Compound 9 appears not to be a fragmentation product of 8 as 9 can 
be recovered in high yield after heating in THF for 105 0C for 15 h with no 
detectable formation of 8. 

product and arises from the cross-conjugated ketoketene complex 
16-A in which the distal-extended closure wins out over the 
proximal-crossed closure. A similar competition exists in the 
intermediate 17-B where both a proximal-extended and a prox­
imal-crossed closure is possible. However, this intermediate leads 
to a bicyclization involving an unprecedented 1Oe" reorganization 
that produces a seven-membered ring into which both vinyl groups 
have been incorporated.9 

That a variety of configurations of cross-conjugated ketoketenes 
complexes can be easily generated from the reaction of carbene 
complexes and alkynes should serve to stimulate the general class 
of 8- and 1Oe" bicyclization reactions that are inherent to these 
intermediates. 
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Silacyclobutadiene, SiC3H4, is a molecule of great interest 
because of its unusual electronic structure and novel reaction 
chemistry.1"5 The formal Hflckel antiaromaticity of its ir system 
suggests that the HOMO-LUMO gap in this molecule should 
be small. Ab initio calculations predict a singlet-triplet splitting 
of only 5 kcal/mol for silacyclobutadiene,6 a value significantly 
less than the 23.0 kcal/mol calculated for cyclobutadiene, C4H4.

7 

Due to closely spaced frontier orbitals, diradicaloid behavior should 
be important in some chemical reactions involving silacyclobu-
tadienes. We now report that persistent triplet diradicals arise 
from the dimerization of two highly hindered silacyclobutadiene 
analogues (Scheme I). 

When a 3-methylpentane (3-MP) glass containing either 1-Mes 
or 1-Trip at 77 K is warmed in the cavity of an EPR spectrometer 
and refrozen at 77 K, strong well-resolved features indicative of 
triplet species appear (Figure 1). In the case of 1-Mes, two triplets 
initially appear at ~100 K: a major triplet (A), with \D\/hc • 
0.0243 cm"1 and \E\/hc < 0.00001 cm"1, and a minor triplet (B), 
with \D\/hc = 0.0138 cm"1 and \E\/hc = 0.00047 cm"1. If the 
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